Simple Bayesian Algorithms for Best Arm Identification

نویسنده

  • Daniel Russo
چکیده

This paper considers the optimal adaptive allocation of measurement effort for identifying the best among a finite set of options or designs. An experimenter sequentially chooses designs to measure and observes noisy signals of their quality with the goal of confidently identifying the best design after a small number of measurements. I propose three simple Bayesian algorithms for adaptively allocating measurement effort. One is Top-Two Probability sampling, which computes the two designs with the highest posterior probability of being optimal, and then randomizes to select among these two. One is a variant a top-two sampling which considers not only the probability a design is optimal, but the expected amount by which its quality exceeds that of other designs. The final algorithm is a modified version of Thompson sampling that is tailored for identifying the best design. I prove that these simple algorithms satisfy a strong optimality property. In a frequestist setting where the true quality of the designs is fixed, one hopes the posterior definitively identifies the optimal design, in the sense that that the posterior probability assigned to the event that some other design is optimal converges to zero as measurements are collected. I show that under the proposed algorithms this convergence occurs at an exponential rate, and the corresponding exponent is the best possible among all allocation rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies

Pandemic influenza has the epidemic potential to kill millions of people. While various preventive measures exist (i.a., vaccination and school closures), deciding on strategies that lead to their most effective and efficient use, remains challenging. To this end, individual-based epidemiological models are essential to assist decision makers in determining the best strategy to curve epidemic s...

متن کامل

Improving the Expected Improvement Algorithm

The expected improvement (EI) algorithm is a popular strategy for information collection in optimization under uncertainty. The algorithm is widely known to be too greedy, but nevertheless enjoys wide use due to its simplicity and ability to handle uncertainty and noise in a coherent decision theoretic framework. To provide rigorous insight into EI, we study its properties in a simple setting o...

متن کامل

Best Arm Identification for Contaminated Bandits

This paper studies active learning in the context of robust statistics. Specifically, we propose the Contaminated Best Arm Identification variant of the multi-armed bandit problem, in which every arm pull has probability ε of generating a sample from an arbitrary contamination distribution instead of the true underlying distribution. The goal is to identify the best (or approximately best) true...

متن کامل

Comparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk

Background and Objective: Colorectal cancer (CRC) is one of the most prevalent malignancies in the world. The early detection of CRC is not only a simple process, but it is also the key to its treatment. Given that data mining algorithms could be potentially useful in cancer prognosis, diagnosis, and treatment, the main focus of this study is to measure the performance of some data mining class...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016